
1

Y.A.C.H : Yet Another Cool Hexapod

A Little ‘’ How -To ‘’

History & Background:

I would like to add ‘’yet another hexapod’’ to the already countless others on the ‘net. As I’m no
‘’professional’’ my project naturally had to be as simple as possible, which on the other hand makes it a
good beginner’s project for others too. So this text is also intended to be a little ‘’How-To’’ for the
beginner.

Now, there are several ways to build a ‘’Hexapod’’ (which actually means ‘’Six-Feeter’’ in Greek),
depending on the versatility of movements it is designed for.

A Robot’s legs could move back & forth, up & down, rotate around their own axles or maybe move in a
circular way ... and those movements could be combined in any way. Each movement demands it’s
own type of ‘’joints’’ and ‘’muscles’’.

Human legs for example basically use three large joints to manage the movements they’re capable of:
The hip, the knee and the ancle-joint. Each and every joint has it’s own type of movement, all together
make all the functions possible: Walking, Running, Jumping, Dancing ...

Of course there’s the ‘’fine tuning’’ with tiny joints and muscles such as in the foot which help making a
human a rather ‘’All Terrain Vehicles“.

The more joints one uses the more sophisticated and variable are the possible types of movement. But
also the more difficult are the mechanics and the necessary controll systems.

So there are Hexapods with one or two or even more joints and servos per leg. There are on the other
hand also designs which couple two or more legs and therefor use less servos, thereby making the
design simpler (and the project cheaper).

These designs will also be lighter, which is a big point to me (take a close look at all those beautiful
hexa - and whatever - pods You can find on the net. You’ll often be able to notice an inconspicious little
cable running away from the vehicle, providing it’s power supplies and sometimes also it’s control
signals ... And I think a robot should be independant of this).

On the other hand the simpler designs (like this, for example ...) will not be ‘’All Terrain Vehicles’’of
course. Because, for example, missing ‘’Degrees of Freedom’’ will have to be substituted by other
factors, e.g. ‘’Friction’’. In fact, this vehicle is very much a ‘’linoleum’’ or ‘’wooden floor’’ vehicle.

2

The hexapod design I’m proposing uses just two servos. Take a look:

Robot as seen from above. The chassis is kept in
black, hind- and fore-legs are in red. Both hind
and fore-legs are coupled, they rotate around the
axles (green dots). Both pairs of legs are coupled
by strings or wires (blue line. Stiff or flexible
connections, no matter. I used flexible, isolated
wires). Only the front pair of legs is actually
powered by a servo which is mounted on the
chassis, with the axle facing downwards, the
control horn directly connecting to the foreleg
axles. The hind-legs are just ‘’pulled along’’. Make
sure the strings are not to tight and not to loose.

Now, this arrangement as shown above would make the robot’s chassis just swing from left to right but
not actually move it forward. But we haven’t talked about the middle pair of legs yet ...

Robot as seen from the front. Colors as above.
The second servo is mounted on its side, axle
connected to the middle pair of legs with a little
lever to enlarge it’s range of movements.

And this is the principle of this hexapod’s way to move:

Lift up the left side. Move the fore- and hindlegs on the left side forward and at the same time those
legs on the right side backward.
Lift up the right side. Move the fore- and hindlegs on the right side forward and at the same time those
legs on the left side backward.

Do it again. Voilà, it walks.

The Chassis:

Anything goes, really. As the first law of building small robots would probably be to keep the weight
down one can use materials like foamed plastics, thin plexiglass boards, plywood and the like. My
preferred chassis materials are Aluminium plates (0,7mm thick), with small perforations. They are used
for decorative purposes mainly (I get them at the Do-It-Yourself-Shop).
To me those plates are ideal: they offer the necessary rigidness while being light enough, they are easy
to work with (just make Your holes with a hand drill or use an old screwdriver if You like, cut them with
an old pair of scissors, bend them by hand over the edge of Your working bench). And they look very
robotic, too :)

3

The Legs:

The material is a bit of a problem. Depending on the way of movement of Your robot and the intended
terrain it is supposed to walk on very different characteristics of the used material must be considered.
There’s the friction, the resistance against torsion or twisting, robustness, weight ...

I used a 2mm thick plexi-glasslike material because I figured it was easy to work on. I drew the outline
of the legs on the plastic sheet and cut them out with a fret-saw. The plastic I used showed a slight
tendency to splinter at the edges. Another type of saw blade might help here. The legs are just a little
bit ‘’floppy’’ but after long test marches they are still in good working (or walking) order.

I decided to give my legs a reptile sort of look ...

... which from a more technical point of view is probably not the optimum. For example, walking on a
carpet does not work very well because the feet will get caught in the slings. A ‘’foot’’ or ‘’stump’’ type of
design would have been an alternative. The feet I used do add some character, though ...

The middle pair of legs must be slightly shorter than the two other pairs because it’s center of rotation
is a bit lower than the other two’s. For connecting the legs to the servos I once again used an
aluminium plate: I wrapped it around the plastic legs and used it to create the angles necessary to
connect the fore- and hind-legs and the little lever described above to lower the turn point of the middle
legs. Then I put the screws through both aluminium and plastic, thereby giving the plastic a little extra
support. A little graphic will show what I mean:

The fore-leg-pair, seen strictly from the side. The
control horn is connected to the servo which is
mounted upright on the chassis . The bent
aluminium plate is fastened to the control horn
with screws, it is wrapped around the plastic leg
and also fixed with screws.

The back pair of legs is fixed quite similary (since there’s no servo providing an axle I substitute it with
a screw which is fastened by a nut and counter nut so it can turn easily without being to ‘’shaky’’).

Now to the middle pair, again seen strictly from the
side, with the servo underneath the chassis. The
control horn is connected to the servo through
an aluminium plate which again ‘’wraps in’’ the
leg pair, again tightened with several screws.

4

For connecting the hind- and fore-legs I used a
flexible wire which is kept out of the way of the
middle legs by another short piece of wire forming
a sort of eyelet, tightened to the chassis (take a
close look at the picture).

The Motors:

I’m using standard servo motors like they are used in RC models. There are lots of different brands
around (Futaba, Hitec, Robbe, ...). I took the cheapest I could get. The torque will always be enough,
using the light weight design I present. They should be able to feed from 5V.
But let me talk about how a servo is driven and what it is anyway.

A servo is a motor with a gearhead attached to it, which provides some torque and also reduces the
motor’s speed. Because of it’s mechanics a servo’s range of movement is restricted to about 180-
240°. By using the control line of the servo You can tell it where on this potential radius it is supposed
to turn to. The further away from the designated position the faster it moves to get there. As soon as it
gets there it will try to remain there, no matter what forces (gravity, mainly) are trying to remove it from
there, as long as the power is switched on. With the power switched off the servo will usually not be
able to hold it’s position!

How is the position sent over the single control line? A servo expects a pulse on it’s control line about
every 20 msec (this value is not too critical and may be varied - trial and error!).

The length of this pulse is critical. It will in fact tell the servo where to go (a pulse of 1.5msec will
usually position it somewhere in the middle of it’s range of movement). Again, the exact values have
got to be found out experimentally. Remember, just one pulse will often not be enough to reach the
designated position because the servo will take some time to get there. If one removes the pulse
before the servo has reached the position it might not get there at all.

The Sensors:

At the front of the robot I have attached two
‘’cherry-type’’ switches, with piano wires fixed to
them. Bumping into something will switch one or
both switches and make the robot react
accordingly.

Eventually I’ll supplement the sensors by an IR
design (the PCB is in the make ...).

5

The Electronics:

Ah, now comes the easy part :) . I have decided to use Atmel AVR microcontrollers, the AT90S2313 to
be precise. It is fast, easy to use for the beginner and (apart from temporal shortages ...) is widely
available. And it offers a lot of features like 15 programmable I/O lines, a full duplex UART, an on-chip
analog comparator, an SPI serial interface, 128 byte of RAM, 128 byte of EEPROM and -very
important- 2Kbyte of FLASH ROM program memory which makes reprogramming it real fast and
simple.Please do take a look at the specs:

http://www.atmel.com/atmel/products/prod200.htm (or thereabout)

As a platform for the circuitry I use the DT104 by DonTronics / Australia which is cheap, done nicely
and is good to solder. The layout and photo of the DT104 board are given below (most pictures taken
from DonTronic’s webpage http://www.dontronics.com , courtesy of Don McKenzie).

The DT104 is part of a program of PCBs with different layouts for different micros. All of these PCB’s
have one thing in common: They offer a bus with more or less standardized pins which are led out of
the PCB using a ‘’SIMM’’ type connector (which is why they’re called ‘’SIMM Sticks’’). Thereby one’s
given a simple way of connecting different PCB’s, according to the function required.

So far I haven’t used this feature: I am using the DT104 as a stand-alone circuit (but might change that
when I eventually run out microcontroller I/O ports or want to add custom PCBs, which will sure happen
some time ...).

Let’s have a look (see a slightly larger image at the end of this text):

Of course there’s all the necessary stuff to drive Your microcontroller like the quartz and a few other
parts like capacitors and the like (see the ‘’ Bill Of Material ’’ below).

As You can see there is the possibility to connect Your circuit to a PC’s serial port via the MAX232 to
the left (it’s not necessary in my project but it might be useful to debug Your programs later on, as You
can hand out messages to a PC).

There is also space for a 5V voltage regulator. I don’t need this feature either since I use
4 type AA batteries, providing 6V for both the circuit and the servos (which works well). Instead I use
the regulator’s solder pads to provide some extra voltage supply pins for external circuitry.
The brownout circuit and the reset inverter are not needed in my design, too.

http://www.atmel.com/atmel/products/prod200.htm
http://www.dontronics.com

6

The possibility to use one of two different external EEPROM chips (to be programmed serially) might
eventually prove valuable, for example if one planned to collect data in some way. For the actual
design -again- it’s not necessary.

Have a look at the board layout (the whole PCB measures about 8,8 by 2,6cm):

Below is a picture of the PCB’s upper side. In red I marked those parts of the circuit I actually use:

The Jumper J5 on the left will be needed for programming the chip ‘’in circuit’’, using the PC’s parallel
port (see the ‘’Software Section below’’). Next to J5 I add two three pin-rows for connecting the servos.
Those pins are connected to the appropriate pins by stiff isolated wires on the solder side of the PCB.
C1 and C2 are ceramic condensators with 100nF capacity, C3 and C4 are 22pF condensators. C9 is
an electrolytic condensator with 10µF / 63V.
R8 and R1 are 1kΩ resistor.
E3 is an 8pin socket for an external EEPROM. E1 is for the 20pin socket for the microcontroller (using
sockets is definitely recommended ...).
In- and output pin pads of the 7805’s part of the PCB are shorted (yellow line, see also picture of the
solder side of the PCB below!) and used for additional +5V pins. Also, for another GND pin I use the
left one of the three pads of the brown out chip.
For the XTAL I am using IC-socket-typed connectors so that I can eventually change the quartz type.
The rest of the board is not used so far.

7

These are the connections added on the solder side (stiff isolated wires in different colors will do nicely:
Black for GND, red for +5V and yellow for the controll lines).

The red dots are the two servo connectors which both carry the power supply and the control lines.
These connect to the microcontroller’s I/O pins PORTB 0 and PORTB 1, respectively. Please count the
pins of the SIMM bus thoroughly (the appropriate pins should be Nos.15 and 16 - look for the position
of pin1 !).

Just to have more possibilities for connecting stuff I usually solder a row of pins into the SIMM bus
connector pads. If You intend to use the SIMM module as such You won’t do that of course ...

Please take care: The actual position of the
three signals +5V, GND and Control on the
plug may vary, depending on the type of servo
You use. In some cases You will have to swap the
wires in the servo’s connector by carefully
pressing on the little clamp with a small
screwdriver and then removing the wires:

In any case the red and black wires will stand for
plus and minus, respectively whereas the yellow
(or white) wire will be the control line.

A battery holder for the four AA-type batteries and
an OFF-switch complete electronics. The next
step would be the connection of sensors and
maybe actuators, too.

8

The Software:

What the DT104 is for the electronic’s side of the project, the BASCOM basic compiler is for the
software department. The Dutch Firm MCS Electronics is offering this really useful tool for a very
reasonable price. And above, they are distributing their product in a (free) demo version which is fully
functioning and is only restricted in the size of programs it will compile. This maximum code size is fully
sufficient for the ‘2313, though !

BASCOM is very similar to Quickbasic so it should be easy to learn ... Most of the AVR’s features and
lots of external hardware are supported. There is a rich wealth of basic instructions for making sounds,
driving LCD displays, using PWM or the various integrated interfaces. And there are constantly
functions being added.

Another bonus is the possibility to program Your chip ‘’in circuit’’ from out of the compiler. There’s no
need for a dedicated programming device, a simple self made cable is enough.
A small schematic (once again from DonTronic’s webside) is added here for completeness:

I bought a parallel cable and cut off the surplus connector, then soldered on a little 8pin connector
fitting into the pin row of J5. The 330Ω resistors can as it says on Don’s webside be omitted. I did and it
works well (the resistors provide a little bit of security for Your PC’s port. I am using a cheap plugin-
card for an extra parallel port which does the same ...).

The latest version of the software can be found on MCS Eletronic’s homepage

http://www.mcselec.com

There is a rather lively mailing list where usually always someone is willing to answer silly questions.
Besides, Mark Alberts, (co-?) programmer of BASCOM is one of the regulars readers too so there’s
information from first hand available too.

http://www.mcselec.com

9

The program below provides a way of ‘’steering’’ the vehicle. See how it’s done ...
Eventually I will have to introduce a sort of operating system, maybe even with a simple multitasking
ability so that I can read sensors while driving the motors.
The code is far from optimated, too. I’ve had slight problems already with the program space ...

(Somewhere on this PDF page there should be a ‘’note’’ which contains this program in a form You can copy & paste into
BASCOM easily ... uncommented version)

'***
'* ATTENTION PLEASE: this code compiles with BASCOM AVR 1.11b and up ! *
'* O.N.L.Y. *
'***
'* YACH - Version 1.1 *
'*************************************
'* Hexapod with two servos *
'* and two feelers *
'* "Steers like a cow" ;) *
'*************************************
'* Portb.1: Middle Pair of Legs *
'* Portb.0: Front- and Rear Pair *
'* Portb.2: Left feeler *
'* Portb.3: Right feeler *
'*************************************
'* Init *
'*************************************

Init:
$crystal = 10000000 ' Quartz value in Hz

$baud = 9600 ' Baudrate for the serial port

Ddrb = &B11110011 ' set portb pin direction for minm & b3
' ' to "in", rest to out

Dim A As Word
Dim H As Byte
Dim B As Byte
Dim Dir As Byte ' contains the direction
Dim Newtouch As Byte ' =1: move is called by a feeler sub
Dim Feeler As Byte ' feeler value, 0=No Contact,
' ' 1= Left, 2= Right, 3= Both
Dim Speed As Integer ' speed of movement
Dim Maxf As Byte , Minf As Byte ' Maxi-/Minimum range (forelegs)
Dim Maxm As Byte , Minm As Byte ' Maxi-/Minimum range (middlelegs)
Dim Count As Byte ' duration of current type of movement

Config Portb = &B11110011 ' configure PORTB as OUTPUT

'*************************************
'* Main *
'*************************************

Main: ' Main Routine
 Newtouch = 0 ' no Contact on Switch-on
 Dir = Rnd(7) ' randomly select a direction/action

 Gosub Feelme ' check feelers, if "contact" Dir will
' ' be changed accordingly
 Gosub Action ' move depending on Dir
Goto Main ' keep on walking forever

'*************************************
'* Action *
'*************************************

Copy & Paste !
'* compiles with BASCOM AVR 1.11b and up !*
'* YACH - Version 1.1 *

Init:
$crystal = 10000000

$baud = 9600

Ddrb = &B11110011
'

Dim A As Word
Dim H As Byte
Dim B As Byte
Dim Dir As Byte
Dim Newtouch As Byte
Dim Feeler As Byte
'
Dim Speed As Integer
Dim Maxf As Byte , Minf As Byte
Dim Maxm As Byte , Minm As Byte
Dim Count As Byte

Config Portb = &B11110011

Main:
 Newtouch = 0
 Dir = Rnd(7)

 Gosub Feelme
'
 Gosub Action
Goto Main

Action:
On Dir Goto Fow , Lef , Rig , Dnc , Bck , Ffw , Pse , F_rgt , F_lft , F_bth

Fow:
 Maxm = 110
 Minm = 230
 Maxf = 180
 Minf = 150
 Count = 20
 Gosub Moveme
Return

Lef:
 Maxm = 145
 Minm = 230
 Maxf = 200
 Minf = 150
 Count = 16
 Speed = 3
 Gosub Moveme
Return

Rig:
 Maxm = 110
 Minm = 145
 Maxf = 165
 Minf = 120
 Count = 16
 Speed = 3
 Gosub Moveme
Return

Dnc:
 Maxf = 165
 Minf = 165
 Count = 10
 Speed = 7
 Gosub Moveme
Return

Bck:
 Maxm = 230
 Minm = 110
 Maxf = 180
 Minf = 150
 Count = 10
 Speed = 5
 Gosub Moveme
Return

Ffw:
 Maxm = 110
 Minm = 230
 Maxf = 180
 Minf = 150
 Count = 10
 Speed = 7
 Gosub Moveme
Return

Pse:
 Wait 3
Return

F_non:

F_lft:
 Newtouch = 1
 Gosub Dnc
 Gosub Bck
 Gosub Rig
 Newtouch = 0
Return

F_rgt:
 Newtouch = 1
 Gosub Dnc
 Gosub Bck
 Gosub Lef
 Newtouch = 0
Return

F_bth:
 Newtouch = 1
 Wait 3
 Gosub Dnc
 Gosub Bck
 Gosub Lef
 Gosub Lef
 Newtouch = 0
Return

Feelme:
 Feeler = Pinb And &B00001100
 Feeler = Feeler / 4
 If Feeler = 0 Then Return
 Dir = Feeler + 6
Return

Moveme: ' approx. values for the range:
' ' 115-179: forward
' ' 187-255: reverse
' ' 180-186: zero position
While Count <> 0
 For H = 0 To 9
 Set Portb.1 ' start pulse on portb, pin1
 For B = 1 To Maxm
 Waitus 4
 Next B
 Reset Portb.1 ' end pulse on portb, pin1
 Waitms 10
 Next H

 For A = Minf To Maxf Step Speed ' The value for "step" will
' ' determine the speed.
' ' counting upward means "forward"
 For H = 0 To 2 ' give the servo some time to turn
 Set Portb.0 ' start pulse on portb, pin0
 For B = 1 To A ' "A" determines the actual position
 Waitus 4 ' the servo is supposed to go to
 Next B
 Reset Portb.0 ' end pulse on portb, pin0
 Waitms 10 ' wait a bit ("every 20 msec" ...)
 Next H
 Set Portb.1 ' start pulse on portb, pin1
 For B = 1 To Maxm
 Waitus 4
 Next B
 Reset Portb.1 ' end pulse on portb, pin1
 Waitms 10
 Next A

 For H = 0 To 12
 Set Portb.1
 For B = 1 To Minm
 Waitus 4
 Next B
 Reset Portb.1
 Waitms 10
 Next H
 If Newtouch = 0 Then
 Gosub Feelme ' quick check: feeler contacted?
 If Dir > 6 Then Return ' yes?
 End If
 Speed = Speed * -1 ' change direction
 For A = Maxf To Minf Step Speed ' counting downwards means
' ' moving backwards
' ' all is relative, of course :)
 For H = 0 To 2
 Set Portb.0
 For B = 1 To A
 Waitus 4
 Next B
 Reset Portb.0
 Waitms 10
 Next H

 Set Portb.1
 For B = 1 To Minm
 Waitus 4
 Next B
 Reset Portb.1
 Waitms 10
 Next A
 Count = Count - 1 ' repeat curr. direction until COUNT=0
 Speed = Speed * -1 ' change direcion again
Wend
Return

End

10

Action:

On Dir Goto Fow , Lef , Rig , Dnc , Bck , Ffw , Pse , F_rgt , F_lft , F_bth

Fow: ' forward
 Maxm = 110
 Minm = 230
 Maxf = 180
 Minf = 150
 Count = 20 'it will walk forward for a longer time
 Speed = 5
 Gosub Moveme
Return

Lef: 'turn left
 Maxm = 145
 Minm = 230
 Maxf = 200
 Minf = 150
 Count = 16
 Speed = 3
 Gosub Moveme
Return

Rig:
 Maxm = 110
 Minm = 145
 Maxf = 165 ' turn right
 Minf = 120
 Count = 16
 Speed = 3
 Gosub Moveme
Return

Dnc: ' Step Dance :)
 Maxf = 165
 Minf = 165
 Count = 10
 Speed = 7
 Gosub Moveme
Return

Bck: ' backward
 Maxm = 230
 Minm = 110
 Maxf = 180
 Minf = 150
 Count = 10
 Speed = 5
 Gosub Moveme
Return

Ffw: ' fast forward
 Maxm = 110
 Minm = 230
 Maxf = 180
 Minf = 150
 Count = 10
 Speed = 7
 Gosub Moveme
Return

Pse:
 Wait 3
Return

F_non: 'no contact made - no action done
Return

F_lft: ' left feeler touched
 Newtouch = 1 ' move without testing feelers
 Gosub Dnc ' Panic !
 Gosub Bck ' shy back
 Gosub Rig
 Newtouch = 0 ' try the right side
Return

F_rgt: ' right feeler touched

11

 Newtouch = 1 ' move without testing feelers
 Gosub Dnc ' Panic !
 Gosub Bck ' shy back
 Gosub Lef
 Newtouch = 0
Return

F_bth: ' both feelers touched
 Newtouch = 1 ' move without testing feelers
 Wait 3 ' BIG panic :)
 Gosub Dnc
 Gosub Bck ' shy back
 Gosub Lef
 Gosub Lef
 Newtouch = 0
Return

'*************************************
'* Feelme *
'*************************************

Feelme:
 Feeler = Pinb And &B00001100
 Feeler = Feeler / 4
 If Feeler = 0 Then Return
 Dir = Feeler + 6 ' => 7,8,9: for the "On .. Goto .."

Return

'*************************************
'* Moveme *
'*************************************

Moveme: ' approx. values for the range:
' ' 115-179: forward
' ' 187-255: reverse
' ' 180-186: zero position
While Count <> 0
 For H = 0 To 9
 Set Portb.1 ' start pulse on portb, pin1
 For B = 1 To Maxm
 Waitus 4
 Next B
 Reset Portb.1 ' end pulse on portb, pin1
 Waitms 10
 Next H

 For A = Minf To Maxf Step Speed ' The value for "step" will
' ' determine the speed.
' ' counting upward means "forward"
 For H = 0 To 2 ' give the servo some time to turn
 Set Portb.0 ' start pulse on portb, pin0
 For B = 1 To A ' "A" determines the actual position
 Waitus 4 ' the servo is supposed to go to
 Next B
 Reset Portb.0 ' end pulse on portb, pin0
 Waitms 10 ' wait a bit ("every 20 msec" ...)
 Next H
 Set Portb.1 ' start pulse on portb, pin1
 For B = 1 To Maxm
 Waitus 4
 Next B
 Reset Portb.1 ' end pulse on portb, pin1
 Waitms 10
 Next A

 For H = 0 To 12
 Set Portb.1
 For B = 1 To Minm
 Waitus 4
 Next B
 Reset Portb.1
 Waitms 10
 Next H
 If Newtouch = 0 Then
 Gosub Feelme ' quick check: feeler contacted?
 If Dir > 6 Then Return ' yes?
 End If

12

 Speed = Speed * -1 ' change direction
 For A = Maxf To Minf Step Speed ' counting downwards means
' ' moving backwards
' ' all is relative, of course :)
 For H = 0 To 2
 Set Portb.0
 For B = 1 To A
 Waitus 4
 Next B
 Reset Portb.0
 Waitms 10
 Next H

 Set Portb.1
 For B = 1 To Minm
 Waitus 4
 Next B
 Reset Portb.1
 Waitms 10
 Next A
 Count = Count - 1 ' repeat curr. direction until COUNT=0
 Speed = Speed * -1 ' change direcion again
Wend
Return

' And Yes, I would hate to take part in a dead reckoning contest ;)

End

13

Thanks to everybody on the web who helped me!

And thanks to my son Jonas for helping me along with his instructive paintings :)

Friday, 27. October 2000,

Christoph Klein (hyla@mayn.de)

mailto:hyla@mayn.de

14

Literature

Build Your Own Robot!
by Karl Lunt
publ. by AK Peters
ISBN 1-56881-102-0

The Robot Builder’s Bonanza
by Gordon McComb
publ. by McGraw-Hill
ISBN 0-07136-296-7

BASCOM-AVR User manual
by Mark Alberts
publ. on http://www.mcselec.com
ISBN -

AVR 8-Bit RISC - Data Sheets AT90S2313
Atmel
publ. on http://www.atmel.com
ISBN -

DonTronics product descriptions
Don McKenzy et al.
publ. on http://www.dontronics.com
ISBN -

And various, not to say countless other websides with clever tips and projects all around the world ...

http://www.mcselec.com
http://www.atmel.com
http://www.dontronics.com

15

Bill Of Material:

− Material for a chassis
− Material for the legs
− 2x standard servos
− a battery holder for 4 type AA batteries
− a modified parallel cable for ‘’in circuit programming’’
− a DT104 PCB (DonTronics and others, who can also tell You about a distributor in Your vicinity)
− 2x 100nF ceramic condensators
− 2x 22pF ceramic condensators
− 2x 1kΩ resistor
− quartz 10MHz
− 10µF / 63V (or so) electrolyte condensator
− 1x AT90S2313 microcontroller (Atmel)
− 1x 20pin ‘’narrow type’’ IC socket
− solder pins (the ones usually used for jumpers! Sold in rows of 50 or so to be separated on will ...)
− various isolated wires
− metall screws / nuts / washers
− BASCOM AVR compiler (MCSElectronics) or the ATMEL assembler if You feel strong enough

... Not a lot, really. I must have forgotten something :-)

16

17

A Short Movie:

